The effect of dose calculation uncertainty on the evaluation of radiotherapy plans.
نویسندگان
چکیده
Monte Carlo dose calculations will potentially reduce systematic errors that may be present in currently used dose calculation algorithms. However, Monte Carlo calculations inherently contain random errors, or statistical uncertainty, the level of which decreases inversely with the square root of computation time. Our purpose in this study was to determine the level of uncertainty at which a lung treatment plan is clinically acceptable. The evaluation methods to decide acceptability were visual examination of both isodose lines on CT scans and dose volume histograms (DVHs), and reviewing calculated biological indices. To study the effect of systematic and/or random errors on treatment plan evaluation, a simulated "error-free" reference plan was used as a benchmark. The relationship between Monte Carlo statistical uncertainty and dose was found to be approximately proportional to the square root of the dose. Random and systematic errors were applied to a calculated lung plan, creating dose distributions with statistical uncertainties of between 0% and 16% (1 s.d.) at the maximum dose point and also distributions with systematic errors of -16% to 16% at the maximum dose point. Critical structure DVHs and biological indices are less sensitive to calculation uncertainty than those of the target. Systematic errors affect plan evaluation accuracy significantly more than random errors, suggesting that Monte Carlo dose calculation will improve outcomes in radiotherapy. A statistical uncertainty of 2% or less does not significantly affect isodose lines, DVHs, or biological indices.
منابع مشابه
Verification of Monitor unit calculations for eclipse Treatment Planning System by in- house developed spreadsheet
Introduction: Computerized treatment planning is a rapidly evolving modality that depends on hardware and software efficiency. Despite ICRU recommendations suggesting 5% deviation in dose delivery the overall uncertainty shall be less than 3.5% as suggested by B.J. Minjnheer. J. In house spreadsheets are developed by the medical physicists to cross-verify the dose calculated by the Treatment Pl...
متن کاملAbsorbed Dose Calculation In Irregular Blocked Radiation Fields: Evaluation of Clarkson’s Sector Integration Method for Radiation Fields Commonly Used in Conventional Radiotherapy
Introduction: Irregular/blocked fields are routinely used in radiotherapy. The doses of these fields are usually calculated by means of equivalent square method that is inherently prone to uncertainty. On the other hand, Clarkson’s sector integration method is a dose calculation method which offers far better accuracy in dose calculation of irregular fields. The Scatter Air Ratio (SAR) of an in...
متن کاملCalculation of Thyroid Dose with Planner System and Evaluation of Thyroid Function after Radiotherapy for Patients with Breast Cancer
Background: Much research has widely been conducted into thyroid hormones levels following radiotherapy for breast cancer. Consequently, in this study, we evaluated to relate the rate of thyroid hormones levels with the dose distribution among breast cancer patients.Material and Methods: Thirty patients were treated with 4-field breast cancer radiotherapy. The dose volume histograms, the volume...
متن کاملA free user friendly program for evaluation of radiotherapy plans based on different dose response models
Introduction: Radiotherapy (RT) plan evaluation using dose response models has become a feasible approach in routine clinical practice. Although there are several tools for this task, they suffer from limitations including number of different dose response models and parameters. In the present study, we aimed to develop a free program for RT plan evaluation based on a variety ...
متن کاملEvaluation of Effect of Different Computed Tomography Scanning Protocols on Hounsfield Unit and Its Impact on Dose Calculation by Treatment Planning System
Introduction: In radiotherapy treatment planning system (TPS), basic input is the data from computed tomography (CT) scan, which takes into account the effect of inhomogeneities in dose calculations. Measurement of CT numbers may be affected by scanner-specific parameters. Therefore, it is important to verify the effect of different CT scanning protocols on Hounsfield unit (HU) and its impact o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 27 3 شماره
صفحات -
تاریخ انتشار 2000